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ABSTRACT. For an integer n, let G(n) denote the smallest x such that the 
primes < x generate the multiplicative group modulo n . We offer heuristic 
arguments and numerical data supporting the idea that 

G(n) < (log 2) -1 log n log log n 

asymptotically. We believe that the coefficient 1/ log 2 is optimal. Finally, we 
show the average value of G(n) for n < N is at least 

(1 +o(l))loglogNlogloglogN, 

and give a heuristic argument that this is also an upper bound. This work gives 
additional evidence, independent of the ERH, that primality testing can be done 
in deterministic polynomial time; if our bound on G(n) is correct, there is a 
deterministic primality test using O(log n)2 multiplications modulo n . 

1. INTRODUCTION 

The purpose of this paper is to study the behavior of 

G(n) = min{x: Zn is generated by primes < x}. 

(Here, Zn denotes the multiplicative group of residue classes mod n .) We give 
heuristic arguments to suggest that 

lim G(n) _n1 
n2oo log n log log n log 2 

and present empirical results in support of the above estimate. 
Our interest in the asymptotic behavior of G(n) stems from the analysis 

of several number-theoretic algorithms. For example, to test an integer n for 
primality, it suffices to use the strong pseudoprime test [26, 29] with prime 
bases up to G(n); if the above conjecture is true, then there is a deterministic 
primality test using O(log n)2 multiplications modulo n . Another example is 
provided by Tonelli's algorithm [33] for computing square roots modp. This 
algorithm uses a number a satisfying (alp) = -1; because this condition is 
easy to test when a is small, it is common to simply use an a < G(n). This is 
done, for example, in the computer algebra system Mathematica. 

Our heuristic model can be summarized as follows: we assume that the small 
primes p = 2, 3, 5, ... represent independent samples from Zn . Probability 
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theory implies that the number of primes needed to generate Zn is almost surely 
less than (1 + o( )) log2 n, and our main conjecture comes from applying the 
prime number theorem to this bound. A matching lower bound arises from a 
different heuristic argument. To test this, we computed G(n) for every n < 
Io,; our data suggest that the theory is correct. For example, there are 23 values 
of n in this range for which G(n) exceeds any previous value; for these n, the 
ratio of G(n) to the [log2 nJ th prime lies between 1 atd 1.86, with an average 
value of 1.187. 

Before proceeding further, we review what is actually known about G(n). 
The P6lya-Vinogradov inequality [8], combined with a lower bound for the 
number of small units mod n [34], implies that G(n) = O(fIi log n log log n) . 
There does not seem to be a better general bound, although this can be sharpened 
in special cases [21]. In particular, for prime n we have G(n) = nl/4+o(l) [5]. 
If the ERH is true, then G(n) = O(logn)2 [28]. 

We can obtain lower bounds on the growth rate of G(n) by observing that 
G(n) is, for odd n, at least as large as the least q with (qln) = -1. Graham 
and Ringrose [15] proved that the least quadratic nonresidue modulo a prime 
p is Q2(logp log log logp), improving the Friedlender-Salie bound of Q(logp) . 
(Here we use the Q-notation in the sense of Hardy, to indicate that a constant 
times logp log log logp is exceeded infinitely often.) Montgomery [28] showed 
that if the ERH is true, this can be raised to Q(logp log logp) . Thus, G(n) is 
occasionally a bit larger than log n, and presumably no more than a constant 
times (log n)2. 

We know of no systematic empirical study of G(n) in the literature. In the 
course of verifying that the ERH implies G(n) < 3 log2 n [1], the first author 
computed G(n) for n < 106. Brown and Zassenhaus [4] computed G(p) for 
every prime p less than 106, and conjectured that with probability "almost 
(but not equal to) one", the first [logpj primes will generate Zp. It is not 
clear how this should be interpreted, but our work does suggest that the natural 
logarithm in this conjecture should be replaced by a logarithm to the base 2. 

Conjectures similar to ours have been made for the least quadratic nonresidue 
modp, when p is prime. For example, Elliott [10] conjectured that the least 
quadratic nonresidue modp is O(logp)1+6, and Montgomery (personal com- 
munication) concluded that according to probability theory, the least quadratic 
nonresidue modulo a prime p ought to be O(logp log logp) . Wagon [35] com- 
pared the least nonresidue to 2(logp log logp) . 

The idea that G(n) should be O(log n log log n) may therefore be part of 
the mathematical folklore. Consequently, the main contribution of this paper 
should be seen as working out the detailed consequences of this idea (in partic- 
ular, the "correct" constant) and subjecting them to experimental tests. 

Artin's conjecture gives an interesting example of probabilistic modeling in 
number theory; since this bears on our own work, we discuss it here. Artin 
stated that any number a, not equal to ? I1 or a square, is a primitive root 
for infinitely many primes. This was based on a naive density argument, which 
suggested that about 37% of all primes should have a as a primitive root. By 
examining numerical data, Lehmer and Lehmer [23] showed that the density 
was not independent of a, and pointed out a possible cause of the error: the 
events that a is a qth power residue modp are not necessarily independent 
for all qlp - 1 . This motivated Heilbronn to compute the precise density (see 
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[37]), and Hooley [19] to show that Artin's density conjecture (in corrected 
form) follows from the ERH. (For the strongest unconditional result in the 
direction of Artin's conjecture, see Heath-Brown [18].) 

One interesting consequence of the corrected version of Artin's conjecture is 
that the initial primes are not uniformly distributed in Zp. This leads to the 
question of whether a naive model of the type we have proposed is sufficient to 
explain the behavior of G(n). We will return to this point in the final section. 

The remainder of this paper is organized as follows. In ?2, we discuss the 
results from probability theory that we will need. This probabilistic theory leads 
to several conjectures about Zn, which are presented in ?3. We discuss lower 
bounds for G(n) in ?4, and the question of its average behavior in ?5. Sections 
6 and 7 present our experimental methods and numerical data. Finally, the 
arguments for our conjectures are reviewed in ?8. 

2. PROBABILISTIC AND ANALYTIC BACKGROUND 

In this section we collect some results for further use, mostly for lack of 
a suitable reference. We will assume that the reader is familiar with analytic 
number theory and probability theory. Good references for this material include 
Davenport [8] and Feller [14]. 

If A is a finite abelian group, let 

r(A) = max{n: A is a direct sum of n nontrivial cyclic groups}; 

we will call this the group rank of A. Clearly, then, r(A) < log2 JAl, and the 
factors occurring in a maximal direct sum are unique up to isomorphism. 

A can always be expressed as a direct sum of its p-Sylow subgroups Ap. 
We let rp(A) = r(Ap) denote the group rank of its p-Sylow subgroup, and call 
this the p-rank. Each Ap is isomorphic to a direct sum of copies of Zpe, for 
various e, and this allows us to think of a set of m elements of A as an m x r 
array. Such a set generates A if and only if the subarray of entries chosen from 
the Zpe 's has rank rp, when each entry is reduced modp. 

We now imagine a process that chooses elements of A at random; we say that 
the ith stage is complete when the elements chosen so far generate a subgroup of 
group rank i. The waiting time until A is generated is the sum of the waiting 
times for each stage. (Note that stages can be skipped.) 

Theorem 2.1. Let T be the number of random samples needed to generate a 
finite abelian group A. We have 

Pr[T > r(A) + x] < 2(2 - eA)-le-Ax, 

whenever 0 < A < log 2. 
Proof. The worst case is easily seen to be A = (Z2)r. We have T = , 
where Ti is the time required for the ith stage; note that the Ti are independent 
geometric random variables. By applying the argument of Chernoff [6] to this 
sum, we obtain 

Pr [ Ti>r+x] <?eXI Jl PiA 

i=i1 

where pi = 1 - 1/2r-i+ and qi = 1 -pi, and 0 < A < log2. The estimate in 
the theorem follows easily from this. Ol 
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To apply this result, we need to estimate the group rank of Zn . 

Theorem 2.2. The group rank of Zn satisfies r(Z*) = ?( log n) n n ~~~~0log log logn) 

Proof. Let co(n) denote the number of distinct prime divisors of n; we also 
define c( 1) to be 1. By the Chinese Remainder Theorem and the structure of 
Zpe , we see that 

r(Z) < c@(n) + Z c(p - 1) < co(n) + co(p - 1) + c(p -1) 
pln p?logn pln 

p>log n 

Applying the prime number theorem to each term yields the result. 5 

We note without proof that the expected time to generate an abelian group 
A is at most r(A) + 0(1) . This can easily be sharpened by taking the structure 
of A into account. Since A is a direct sum of its p-Sylow subgroups, we can 
imagine that samples from the various Ap are chosen independently in parallel. 

Theorem 2.3. Let A be an abelian group, such that JAI has k primefactors. If 
T is the waiting time to generate A, we have 

max{rp} < E(T) < max{rp} + 0(logk). 
Proof. Let Zp be the time to generate Ap, less the p-rank rp(A). Then Zp is 
stochastically less than an exponential random variable, that is, 

Pr[Zp >x]<e-x, 

for some ca > 0. (See [27] for background on stochastic ordering.) For x > 0, 
we therefore have 

e-ax k 

Pr[max{Zp}<a-llogk+x]> 
1(- e I)k 

1- ex. 

Thus, max{Zp } is stochastically less than a- 1 log k plus an exponential random 
variable; from this the result follows. O 

In studying the average value of G(n), we will need the following analytic 
result. 

Lemma 2.4. We have 
1 

sE, w(p (n)) (log log N)2 
N ~~~~2 
n<N 

Proof. We have 

E (p (n)) = E 5 w(,p(pe)) = 5 5 C((p - 1)pe-l) .#{n < N: pelIn} 
n<N n<N peIIn p<N e> 1 

Nw(p - 1) + , N(w(p - 1) + 1) 

p<N pN (p- 1) 

Since co(p - 1) = O(log p) , the second sum is 0(N) . By a theorem of Halber- 
stam [17], Ep<x co(p - 1) x log logx/logx; we combine this with Stieltjes inte- 
gration by parts to show the first sum is N(log log N)2/2 + 0(N log log N/log N). 
These bounds easily imply the result. O 
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3. PRIMES IN RESIDUE CLASSES OF Zn 

Motivated by Dirichlet's theorem, we now adopt the following heuristic 
model: we assume that the primes 2, 3, 5, ... lie in residue classes mod n 
that are chosen at random. 

To familiarize the reader with this model, we discuss the least prime in an 
arithmetic progression. Heuristic estimates for this have been advanced before 
[36, 25]; we will derive these estimates anew using our model. We define 

P(n) = min{x: every residue class of Zn contains a prime < x}. 

We can formulate a good guess for the growth rate of P(n), using the follow- 
ing "occupancy" model. Assume that we throw balls into m bins at random. 
The time until each bin has at least one ball has expected value m EZ I 1/i 
and has a distribution tightly concentrated around m log m [13]. We now let 
the bins be the different residue classes of Zn, so that there are m = (0(n) 
bins. If the primes fell into these classes at random, the expected number of 
primes needed would be asymptotic to m log m (0(n) logn . (This ignores the 
O(log n/log log n) primes that divide n, but their effect is negligible.) Using 
the prime number theorem in the form Pk k log k, we see that P(n) should 
be close to (o(n)(logn)2. This is Wagstaffs conjecture [36]. 

In the occupancy problem, the probability that some bin remains empty after 
r balls are thrown is at most m(l - l/m)r < me-rim. With the choice m = 
p(n) and r = (2 + e)m log m, the Borel-Cantelli lemma and the prime number 
theorem imply we should have 

lim sup P(n) <2 
nimsuP q(n)(logn)2 <2. 

This was conjectured by McCurley [25], and agrees with numerical data. 
Wagstaff [36] computed P(n) for 11 < n < 5 x 104, and found four val- 
ues of n for which P(n)/((o(n) log n log (0(n)) exceeded 2; the largest value of 
this ratio was 2.209. 

We now apply similar reasoning to make a conjecture about G(n), the largest 
prime needed to generate Zn . Again, we assume that the initial primes act like 
random elements of Zn as far as the group structure is concerned. Under this 
assumption, Theorem 2.1 implies that for any f, > 1/2, the probability that we 
need more than r(Z*) +x primes to generate Zn is Q(13X). Applying Theorem 
2.2 and the Borel-Cantelli lemma, we conclude that for any e > 0, we should 
need more than ( -1 +e) log n primes only finitely often. By the prime number 
theorem, this is equivalent to the following statement. 

Conjecture 1. We have 

lim sp G(n) 1 
nli+ slognloglogn - log2' 

We remark that our probabilistic model is oversimplified, but not so much as 
to affect the above conjecture. For example, we should not consider the primes 
dividing n as possible elements of Zn, but since n has O(logn/loglogn) 
prime factors, it does no harm to do so. Similarly, for reasons connected with 
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Artin's conjecture (see ?8), we may wish to omit the. prime divisors of (0(n) 
from consideration, but these are also few in number. 

4. A HEURISTIC LOWER BOUND FOR G(n) 

In this section we give a different probabilistic argument, which suggests it is 
unlikely that the constant in Conjecture I could be reduced below 1 / log 2. 

Note that if (pimp) = + 1 for i = 1, ... , k, then p splits completely in 
the number field K = Q(\/2, ... , Vpk). By the Chebotarev density theorem, 
about 1 /2k of the primes will have this property. We now make the heuristic 
assumption that each prime splits independently with probability 1/ 2k. The 
probability that more than m primes must be sampled to find one that splits is 
(1 - qk)m, where qk = 1/2k . (Here we are ignoring the first k primes.) By the 
Borel-Cantelli lemma, then, if p is the least prime splitting in K, we should 
have p < Pk2k, with finitely many exceptions. Applying the prime number 
theorem twice, we obtain the following conjecture. 

Conjecture 4.1. There is an infinite sequence of primes p for which 

G(p) l1 2logploglogp(1 +o(l)). 

If we assume the ERH, we get an asymptotic lower bound with a slightly worse 
constant. This provides a numerical version of a theorem of Montgomery [281. 

Theorem 4.2 (ERH). There is an infinite sequence of primes p for which 

G(p) > 
I 

1 2 logp loglogp(1 + o(l)). 
2 2log 2 

Proof. Let AK denote the absolute value of K's discriminant. According to the 
effective Chebotarev theorem of Lagarias and Odlyzko [22], the ERH implies 
the existence of a prime p that splits in K, with p = O(log2 AK). Using 
bounds for the discriminants of Kummer fields (i.e., Theorem 9.5.2 of [7]) and 
the prime number theorem, we have log AK = O(k2klogk). Thus, logp < 
2klog2 + O(logk). Since G(p) > Pk, this gives the result. 5 

5. THE AVERAGE VALUE OF G(n) 

In this section we give arguments to support the idea that G(N), the average 
value of G(n) for n < N, grows like log log N log log log N. In a paper devoted 
to heuristics, it is well to provide at least one rigorous theorem. 

Theorem 5.1. Let G(N) = EN G(n). We have 

G(N) > (1 + o(1)) log log N log log log N. 
Proof. Let co(n) denote the number of distinct prime divisors of n. Observing 
that at least r2 (Z*) primes not dividing n are needed to generate Zn, we see 
that G(n) > pc)(,) for all n > 3. We now temporarily change the definition of 
G(n) so that this holds for all n > 1; this will not affiect the asymptotic result. 

Rosser [301 showed that the kth prime is greater than k logk . The Erdos- 
Kac theorem [12] implies that co(N), the mean value of w(n) for n < N, 
is asymptotic to loglogN. Using these two facts and Jensen's inequality, we 
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obtain 
N N 

G(N) > - ZPw(n) > E @ o(n)logwo(n) 
n=1 n=1 

> -&)(N) log co(N) log log N log log log N. 0 

We now give a heuristic argument for an upper bound that matches Theorem 
5.1. Let G(n) = Pk(n). We temporarily ignore the primes dividing n, and 
heuristically consider k(n) for n < N as a random variable. If this were true, 
we could apply Theorem 2.3, observing that the 2-Sylow group has the largest 
group rank, to obtain 

k(N) = 72(N) + N 0 0(logc)((o(n))). 
n<N 

(Here k(N) denotes the mean value of k(n) for n < N; similarly for 72(N).) 
Since r2(n) = co(n) + 0(1), the mean value of r2(n) is asymptotic to loglog N. 
By Jensen's inequality and Lemma 2.4, the mean value of logc (qi(n)) is 
0(log log log N). By the Erdos-Kac theorem, therefore, k(n) should be tightly 
distributed around an asymptotic mean value of log log N. This suggests the 
error in ignoring primes dividing n should be negligible, since ZP<O(loglogN) 1 /p 

= 0(log log log N) . We should therefore have 

IN 
G(N) = + Z Pk(n) ' 

Pk(N) 
< (1 + o( l)) log log N log loglog N. 

n=1 

Combining the two bounds, we get the following conjecture. 

Conjecture 5.2. We have 

G(N) log log N log log log N. 

6. COMPUTING G(n) 

This section describes our procedures for computing G(n) . In particular, we 
describe a parallel algorithm that allowed us to find G(n) for each n < 109 . 

We define a character of order p to be a homomorphism from Zn to the 
additive group {O, .. ., p - 1 }. (Note that this differs slightly from the usual 
definition.) We can obtain generators for the character group of Zn from the 
factorization of n, using the Chinese Remainder Theorem. This is done in 
a straightforward way which we will not go into here, except to note that the 
characters of order 2 can be efficiently computed as Jacobi symbols. Otherwise, 
evaluation of a character of order p entails the solution of a discrete logarithm 
problem in a group of order p. We can, however, easily decide if such a 
character evaluates to 0 or not. 

To compute the smallest generating set for Zn, we handle each p-Sylow 
subgroup separately. This requires us to factor n and further factor p - 1 
for each prime p dividing n. Assuming this is done, we do the following for 
each p: Choose characters Xi, . . ., Xr that generate the character group of the 
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p-Sylow subgroup. Then find the least x such that the matrix 

(I (2) X2(2) Xr(2) 

Xi (X) X2(X) ... Xr(X) / 
has rank r. (Here it is convenient to say that a character takes the value 0 
when its argument is not a unit mod n.) G(n) is then the maximum of the x's 
computed in this fashion. 

The above sketch can be filled in to give a sequential algorithm that will 
compute G(n) for n < N in polynomial amortized time. (That is, assuming 
ERH, the total time is N(log N)0(1) .) The main idea is to use a sieve to factor 
each n < N; this guarantees that all relevant factorizations will be available 
when needed. However, it must also be checked that the discrete logarithm 
computations will not be burdensome. To do this, we first observe that if p 
appears only once in the factorization of (o(n), it suffices to find the first x 
with a nonzero character value. Thus, characters of order p need only be 
evaluated if p2 10 (n) . For such p, we have p < vW; under this restriction and 
the ERH, it can be shown that O((logN)4/p2) of the n < N will have p(n) 
divisible by p2. (Naively, one might expect this fraction to be about p-2, but 
this is false [9].) Even if a brute force search for the discrete logarithm is used, 
the total cost of all discrete log computations is Ep<\,r-(logN)0(1)/p, which is 
small. 

We parallelize the above algorithm by giving each processor the task of com- 
puting G(n) for each integer in a block of size k. We can still use the sieve 
of Eratosthenes to factor the n, provided we give each processor a list of the 
primes less than VN_. (This is the parallel segmented wheel sieve, as described 
by Sorenson and Parberry [31].) However, this leaves the problem of factoring 
p - 1; these are simply looked up in a table (if small) and factored by brute 
force (if large). 

We assume available m worker processors P = {PI, ..., Pn}, and a single 
master processor M. The latter is responsible for assigning work to an idle 
Pi, and each Pi is responsible for doing the work assigned to it and for com- 
municating (to M) when this work is complete. It is only necessary for M to 
send messages to Pi, and for Pi to reply in kind; communication amongst the 
workers is not necessary. 

The master M partitions the interval { 1, .1. , N} into subintervals of size 
k. It is convenient if kIN, though in practice the subintervals need not be 
of identical size. M communicates the bounds of a subinterval to an idle 
Pi. Although subintervals have equal size, the computation time required for 
a subinterval varies. Hence, the processors must operate asynchronously. The 
tradeoff in choosing k is the following: N/k should be large compared to m, 
so as to equalize the total time spent by each worker. However, if k is too 
small, communication costs dominate the computation. 

To compute record values of G(n) in parallel, M maintains a current record 
table, R. When assigning work to an idle Pi, then M also sends a copy of 
R to Pi. A new copy of this is returned, containing any new records that Pi 
encounters during its computation. M must merge the table received from Pi 
with R; that is, M replaces superseded records in R with the new records 
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received from Pi, and inserts new records as necessary. 
Any long computation must be fault-tolerant. To accomplish this, M check- 

points the computation every C subintervals. After assigning C subintervals, 
M waits until the computations of outstanding subintervals complete. Then, M 
logs the current record table as well as the bounds of the successfully completed 
interval. If a processor or channel faults, the computation can be restarted from 
the last checkpoint. 

The computation of G(n) for n < 109 was performed on a 64-processor 
Thinking Machines CM-5. Subintervals were of length k = 215 and the com- 
putation was checkpointed every 29 subintervals. Each worker was provided 
with a list of the first 212 primes, together with the factorizations of p - 1 
in this range. The computation required approximately 54 hours. This time 
is approximate, since redundant computations were performed (due to faults), 
and the machine was timeshared with other users. 

7. COMPARISONS WITH NUMERICAL DATA 

In this section, we discuss some experimental results lending support to the 
heuristic theory. 

We computed G(n) for each n < 109. The first two columns of Table 1 
give the record values of G(n); that is, values of n for which G(n) exceeds 

TABLE 1. Record values of G(n) for n < 109 

n G(n) a(n) a'(n) 

3 2 13.417211 1.000000 
4 3 4.592292 1.000000 
6 5 3.316650 1.666667 
12 7 2.145161 1.400000 
20 11 2.319711 1.571429 
24 13 2.452159 1.857143 
120 17 1.571711 1.307692 
780 23 1.262652 1.000000 
920 29 1.533720 1.260870 
1364 37 1.797547 1.275862 
6090 41 1.506324 1.108108 
26220 47 1.380249 1.093023 
53570 53 1.412988 1.127660 
67044 59 1.528140 1.113208 
205608 61 1.380156 1.033898 
249690 67 1.482887 1.135593 
2225685 73 1.290801 1.000000 
3442296 79 1.341717 1.082192 
5053620 97 1.591658 1.227848 
60369855 101 1.354115 1.041237 
191895456 103 1.269674 1.000000 
475528443 107 1.239532 1.000000 
715236599 109 1.229120 1.000000 
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all previous values. These values are compared with two predictions from our 
heuristic theory in the third and fourth columns. We define 

a(n) = G(n) log 2 
log nlog log n 

the theory predicts that lim sup a(n) = 1 . This uses the asymptotic value Pk 
k log k, and is not all that accurate for the small values of G(n) we observed. 
For this reason, it is better to compare G(n) with Pk, where k = log2 nJ . To 
do this, we define 

a'(n) = G(n) 
PLlog2 nJ 

It is interesting to compare the data of Table 1 with the theory of extreme 
values due to Gumbel [16]. According to this theory, if one observes i.i.d. sam- 
ples XI, X2, ... from some distribution, the time between successive record 
values of Xi is controlled by the tail of their common distribution. In partic- 
ular, because Theorem 2.1 says that the probability that more than t primes 
are needed to generate Zn goes down roughly as 2-t, we might guess that the 
interval between record values of G(n) should approximately double with each 
successive record. This is happening toward the end of Table 1. Also, the num- 
ber of records in this table, 23, is not too far from the "predicted" number of 
log 109 +y=21.300.... 

We also computed the average value of G(n) for n < 109 and found it to be 
13.032. This is in agreement with our heuristic theory, as we now explain. As a 
general rule, we have generators for Zn as soon as we can generate the 2-Sylow 
subgroup. (Theorem 2.3 and Lemma 2.4 provide an explanation for this, if we 
note that the 2-Sylow subgroup maximizes the group rank.) The average group 
rank of the 2-Sylow subgroup for n < N is 3/8 + Z2<p<N 1/p - log logN + 
0.139.... (Because Z* is not necessarily cyclic when n is a power of 2, the 
prime 2 must be treated specially.) The average number of random elements 
needed to generate (Z2)r is about r+1.606... . Now, a further correction term 
should be added to account for small prime divisors; for example, 3 divides 
n a third of the time, and for these n we will need one additional prime. 
Since log log 109 + 0.139... + 1.606 .... . = 4.776 ... , it is reasonable to include a 
correction for the first five primes of 1/2 + 1/3 + 1/5 + 1/7 + 1/11 = 1.267.... 
Adding everything up, we predict the average number of primes to be 6.044.... 
Because P6 = 13, this agrees well with the computed average of 13.032. 

As a further check on the theory, we computed G(n) for the pseudosquares 
tabulated by Lehmer, Lehmer, and Shanks [24] and Stephens and Williams 
[32]. These are numbers n 1_ mod8 with (nip) = +1 for all small p; they 
are therefore good candidates for unusually large values of G(n) . We found in 
every case that G(n) is the first p with (nlp) = -1. 

Table 2 compares G(n) against two asymptotic estimates provided by the 
heuristic theory. We define a(n) as before, and also introduce 

a"(n) G(n) 
PLlog2(n/8)J 

The rationale for a"(n) is that the numbers n are constrained to a residue 
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TABLE 2. G(n) for pseudosquares 

n G(n) a(n) al(n) 

17 3 0.704766 1.500000 
73 5 0.554642 1.000000 
241 7 0.519767 1.000000 
1009 11 0.570000 0.846154 
2641 13 0.554055 0.684211 
8089 17 0.596046 0.739130 
18001 19 0.588953 0.612903 
53881 23 0.612721 0.621622 
87481 29 0.726419 0.707317 
117049 31 0.749358 0.756098 
515761 37 0.756709 0.787234 
1083289 41 0.777178 0.694915 
3206641 43 0.735039 0.704918 
3818929 47 0.790763 0.770492 
9257329 53 0.825252 0.746479 
22000801 59 0.855436 0.808219 
48473881 67 0.913315 0.848101 
175244281 71 0.880823 0.797753 
427733329 79 0.921682 0.814433 
898716289 83 0.922162 0.821782 
2805544681 101 1.044871 0.943925 
10310263441 103 0.986793 0.911504 
23616331409 107 0.978531 0.842520 
85157610409 113 0.964836 0.824818 
196265095009 131 1.071766 0.942446 
2871842842801 149 1.072673 0.914110 
26250887023729 157 1.026597 0.877095 
112434732901969 173 1.066061 0.905759 
178936222537081 181 1.095075 0.937824 
696161110209049 193 1.108382 0.969849 
2854909648103881 197 1.074184 0.833408 
6450045516630769 211 1.117676 0.929515 
11641399247947921 227 1.177963 0.991266 

class mod 8, and it is therefore reasonable to take the number of "samples" to 
be n/8. 

It will be observed that Table 1 corresponds better to the heuristic theory than 
Table 2 does. We have not attempted to explain this, other than to observe that 
the numbers n in Table 2 were not chosen to be record values of G(n); for 
this reason, a"(n) might be a bit smaller than 1. 

8. CRITIQUE 

We may summarize the argument that the true growth rate of G(n) is 
O(log n log log n) as follows. First, the heuristic model that small primes lie 
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in random residue classes of Zn gives numerically accurate predictions, both 
for the record values and for the average value of G(n). In addition, this 
model suggests conjectures about primes in residue classes that were derived 
independently by other means. Second, a "random splitting" argument based 
on Chebotarev's theorem, and the ERH, suggest that no bound for G(n) below 
O(log n log log n) can be valid. 

Aside from the obvious objection that no randomization is involved for the 
real primes, there are several others that could be raised against our arguments. 
The first one is that our theory has assumed sampling with replacement, whereas 
the primes 2, 3, 5, ... are obviously distinct. Sampling with replacement, 
however, will only increase the time needed to construct a generating set, so our 
upper bound argument is not affected. Another point is that our heuristic theory 
does not take the effect of primes dividing n into account; one might therefore 
expect a more complicated stochastic process than the one we have used to be 
necessary. Finally, it is known that the initial primes do not represent random 
samples from Zn. 

In the context of Artin's conjecture, this nonuniformity appears in examples 
of the following type. Consider a prime p for which 5 is a potential primitive 
root. If p _ 1 mod 5, we have (5 jp) = + 1 by quadratic reciprocity, so if 5 is 
not a fifth power modp, it cannot be a quadratic nonresidue. Thus, there is a 
"coupling" between the values taken by 5 in the 2-Sylow group and the 5-Sylow 
group of Zp; they cannot be thought of as independent. 

Using results of Elliott [1 1], we can express this deviation from randomness 
in the following way. For an integer k > 0, let Ek denote the mean value 
of the least kth power nonresidue modp, where the average is taken over all 
primes p 1 mod k . A naive probabilistic argument suggests that this mean 
value should equal 

Ek (k) EZ k 
n= 1 

However, the true mean value is given by 

Ek = 1P (dn,- dn 
- 

where dn is the degree of the number field Q(Ck, Yp-, ..., ) . Although 
these agree when k is prime, they are not the same in general; for example, if 
k = 8, the true value is about 7% higher than the naive probability argument 
would predict. Because Ek < Ek, one can think of Elliott's results as reflecting 
a small, but systematic, bias for small primes to lie in nontrivial subgroups of 
Z7* p . 

We argue, though, that the nonrandomness reflected in Artin's corrected con- 
jecture and Elliott's results is not great enough to affect our conclusions. In 
the first place, the effect only applies to primes dividing p - 1 (see Lemmas 4 
and 5 of [1 1]), and we can easily compensate for this by banishing the primes 
dividing p(n) from our model. In the second place, the waiting time to gener- 
ate Zn is essentially the waiting time to generate the 2-Sylow subgroup, and we 
know of no substantial deviations from randomness for quadratic characters. 
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For example, a result of Baillie and Wagstaff [2, Theorem 9] shows that when 
n is odd, L(n), the least prime p with (pIn) $A 1, has a mean value in accor- 
dance with probability theory, provided one accounts for the primes dividing 
n. (Dirichlet's class number formula [3, p. 346] can be interpreted as reflecting 
a bias toward small quadratic residues, but this effect is negligible when n is 
large.) 

For these reasons, we conclude that the simplifications in our model are 
apparently not drastic enough to affect the growth rate of G(n). Although a 
more refined model may be worth considering for other reasons, we will not 
pursue this further here. 

In closing, something should be said about why heuristic arguments are worth 
our attention. After all, this paper presents only one new theorem about G(n) . 
However, many practical algorithms have been designed under the premise that 
a number-theoretic function behaves randomly. For this reason alone, it is 
important to state such intuitive ideas in a precise and falsifiable manner. This 
work will have been justified if it leads to future theorems characterizing the 
growth rate of the important function G(n), or to new observations indicating 
that its behavior deviates from the predictions of our simple probabilistic model. 

ACKNOWLEDGMENTS 

The support of the National Science Foundation, via grants CCR-8552596 
and CDA-9024618, is gratefully acknowledged. We would also like to thank 
Hugh Montgomery for useful discussions, and Todd Proebsting for help with 
sieves. 

BIBLIOGRAPHY 

1. E. Bach, Explicit bounds for primality testing and related problems, Math. Comp. 55 (1990), 
355-380. 

2. R. Baillie and S. S. Wagstaff, Jr., Lucas pseudoprimes, Math. Comp. 35 (1980), 1391-1417. 

3. Z. I. Borevich and I. R. Shafarevich, Number theory, Academic Press, New York, 1966. 

4. H. Brown and H. Zassenhaus, Some empirical observations on primitive roots, J. Number 
Theory 3 (1971), 306-309. 

5. D. A. Burgess, On character sums and primitive roots, Proc. London Math. Soc. (3) 12 
(1962), 179-192. 

6. H. Chernoff, A measure of asymptotic efficiency for tests of a hypothesis based on the sum of 
observations, Ann. Math. Statist. 23 (1952), 493-507. 

7. H. Cohn, A classical invitation to algebraic numbers and class fields, Springer-Verlag, New 
York, 1978. 

8. H. Davenport, Multiplicative number theory, Springer-Verlag, New York, 1980. 

9. R. E. Dressler, A property of the (p and aj functions, Compositio Math. 31 (1975), 115- 
118. 

10. P. D. T. A. Elliott, The distribution of primitive roots, Canad. J. Math. 21 (1969), 822-841. 

11. , A problem of Erd6s concerning power residue sums, Acta Arith. 13 (1967), 131-149; 
Corrigendum, ibid. 14 (1968), 437. 

12. P. Erd6s and M. Kac, On the Gaussian law of errors in the theory of additive number theoretic 
functions, Amer. J. Math. 62 (1940), 738-742. 

13. P. Erd6s and A. Renyi, On a classical problem of probability theory, MTA Mat. Kut. Int. 
Kozl. 6A (1961), 215-220. Reprinted in Selected papers of Alfred Renyi, vol. 2, Akademiai 
Kiado, Budapest, 1976, pp. 617-621. 



82 ERIC BACH AND LORENZ HUELSBERGEN 

14. W. Feller, Introduction to probability theory and its applications, Wiley, New York, 1968. 
15. S. Graham and C. J. Ringrose, Lower bounds for least quadratic nonresidues, Analytic Num- 

ber Theory: Proceedings of a Conference in Honor of Paul T. Bateman (B. C. Bemdt et 
al., eds.), Birkhauser, Boston, 1990, pp. 269-309. 

16. E. J. Gumbel, Statistics of extremes, Columbia Univ. Press, New York, 1958. 

17. H. Halberstam, On the distribution of additive number theoretic functions. III, J. London 
Math. Soc. 31 (1956), 14-27. 

18. R. Heath-Brown, Artin's conjecture for primitive roots, Quart. J. Math. Oxford Ser. (2) 37 
(1986), 27-38. 

19. C. Hooley, On Artin's conjecture, J. Reine Angew. Math. 225 (1967), 209-220. 

20. J. L. Hafner and K. S. McCurley, A rigorous subexponential algorithm for computation of 
class groups, J. Amer. Math. Soc. 4 (1989), 837-850. 

21. G. Kolesnik and E. G. Straus, On thefirst occurrence of values of a character, Trans. Amer. 
Math. Soc. 246 (1978), 385-394. 

22. J. C. Lagarias and A. M. Odlyzko, Effective versions of the Chebotarev density theorem, 
Algebraic Number Fields (A. Fr6hlich, ed.), Academic Press, London, 1977, pp. 409-464. 

23. D. H. Lehmer and E. Lehmer, Heuristics, anyone? Studies in Mathematical Analysis and 
Related Topics (G. Szeg6, ed.), Stanford Univ. Press, Stanford, CA, 1962, pp. 202-210. 

24. D. H. Lehmer, E. Lehmer, and D. Shanks, Integer sequences with prescribed quadratic 
character, Math. Comp. 24 (1970), 433-451. 

25. K. S. McCurley, The least r-free number in an arithmetic progression, Trans. Amer. Math. 
Soc. 293 (1986), 467-475. 

26. G. L. Miller, Riemann 's hypothesis and tests for primality, J. Comput. System Sci. 13 (1976), 
300-317. 

27. A. W. Marshall and I. Olkin, Inequalities: theory of majorization and its applications, Aca- 
demic Press, New York, 1979. 

28. H. L. Montgomery, Multiplicative number theory, Lecture Notes in Math., vol. 227, 
Springer-Verlag, New York, 1971. 

29. M. 0. Rabin, Probabilistic algorithm for testing primality, J. Number Theory 12 (1980), 
128-138. 

30. J. B. Rosser, The nth prime is greater than n log n, Proc. London Math. Soc. 45 (1939), 
21-44. 

31. J. Sorenson and I. Parberry, Two fast parallel prime number sieves, Technical Report 
CRPDC-91-8, Center for Research in Parallel and Distributed Computing, University of 
North Texas, July 1991; Inform. Comput. (to appear). 

32. A. J. Stephens and H. C. Williams, An open architecture number sieve, Number Theory and 
Cryptography (J. H. Loxton, ed.), Cambridge Univ. Press, Cambridge, 1990, pp. 38-75. 

33. G. Tonelli, Bemerkung uber die Auflosung quadratischer Congruenzen, Gott. Nachr. (1891), 
344-346. 

34. D. Suryanarayana, On A(x, n) = p(x, n) - xep(n)/n, Proc. Amer. Math. Soc. 44 (1974), 
17-21. 

35. S. Wagon, The evidence: primality testing, Math. Intelligencer 8 (1986), 58-61. 

36. S. S. Wagstaff, Jr., Greatest of the least primes in arithmetic progressions having a given 
modulus, Math. Comp. 33 (1979), 1073-1080. 

37. A. E. Western and J. C. P. Miller, Tables of indices and primitive roots, Cambridge Univ. 
Press, Cambridge, 1968. 

COMPUTER SCIENCES DEPARTMENT, UNIVERSITY OF WISCONSIN, MADISON, WISCONSIN 53706 

E-mail address, E. Bach: bach@cs.wisc.edu 
E-mail address, L. Huelsbergen: lorenz@cs.wisc.edu 


	Cit r144_c147: 
	Cit r167_c172: 


